Homework 2

(Due date: January 31st @ 7:30 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (12 PTS)

• Calculate the result of the additions and subtractions for the following fixed-point numbers.

UNSI	GNED	SIGNED		
0.11010 +	1.00111 -	1.0001 +	0.0101 -	
1.0101101	0.0000111	1.001001	1.0101101	
10.10101 +	100.1 +	1000.0101 -	101.0101 +	
1.1001	0.10101	11.010101	1.0111101	

PROBLEM 2 (15 PTS)

Multiply the following signed fixed-point numbers (6 pts):

01.001 × 10.0001 × 1.11010 ×	
1.001001 01.01001 110.11011	

• Get the division result (with x = 4 fractional bits) for the following signed fixed-point numbers:

101.1001 ÷	11.011 ÷	10.0110 ÷
1.011	1.01011	01.01

PROBLEM 3 (11 PTS)

- We want to represent numbers between -128.87 and 127.12. What is the fixed point format that requires the fewest number of bits for a resolution better or equal than 0.0015? (4 pts).
- We want to represent numbers between -255.12 and 256.91. What is the fixed point format that requires the fewest number of bits for a resolution better or equal than 0.0025? (4 pts).

I	Represent these numbers in Fixed Point Arith	metic (signed numbers). Select the	minimum number of bits in each case.
	-128.1875	-78.125	107.3125

PROBLEM 4 (10 PTS)

• Complete the table for the following fixed point formats (signed numbers): (4 pts)

Fractional bits	Integer Bits	FX Format	Range	Dynamic Range (dB)	Resolution
8	4				
10	6				
16	8				

<u>Complete the table for these floating point formats (which resemble the IEEE-754 standard). Only consider ordinary numbers.</u>

Exponent bits (E)	Significant bits (p)	Min	Max	Range of e	Range of significand
8	7				
10	13				
12	35				

PROBLEM 5 (20 PTS)

• Calculate the decimal values of the following floating point numbers represented as hexadecimals. Show your procedure.

	Single	(32 bits)	Double (64 bits)			
ſ	✓ E8000978	✓ 800BCCAA	✓ 7FFDECADEFEEBEE9	✓ 8009BEBEFACE8000		
	✓ 80DE0FEE	✓ 7ffcafea	✓ 49A5DEAF8FAD8000	✓ 70800FEDCAB09000		

PROBLEM 6 (32 PTS)

Calculate the result (provide the 32-bit result) of the following operations with 32-bit floating point numbers. Truncate the
results when required. When doing fixed-point division, use 8 fractional bits. Show your procedure.

✓ 40	00000 + C2EA9000	\checkmark	5A09D378 - 4C490FD8	\checkmark	7A09C000 × 8BEE0000	\checkmark	C9680000 ÷ 80700000
✓ 80	A8000 + 92CE8000	\checkmark	10DAD000 - 90FAD000	✓	FA19D800 × CD100000	✓	7A390000 ÷ C8400000